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Abstract

We present a methodology that accelerates the classical Jacobi iterative method by factors
exceeding 100 when applied to the finite-difference approximation of elliptic equations on
large grids. The method is based on a schedule of over- and under-relaxations that preserves
the essential simplicity of the Jacobi method. Mathematical conditions that maximize the
convergence rate are derived and optimal schemes are identified. The convergence rate pre-
dicted from the analysis is validated via numerical experiments. The substantial acceleration
of the Jacobi method enabled by the current method has the potential to significantly ac-
celerate large-scale simulations in computational mechanics, as well as other arenas where
elliptic equations are prominent.

Keywords: Iterative method, Jacobi method, Elliptic equations

1. Introduction

Elliptic equations appear routinely in computational fluid and solid mechanics as well as
heat transfer, electrostatics and wave propagation. Discretization of elliptic partial differen-
tial equations using finite-difference or other methods leads to a system of linear algebraic
equations of the form Au = b, where u is the variable, b the source term, and A, a banded
matrix that represents the coupling between the variables. In the context of computational
fluid mechanics, which is of particular interest to us, the Poisson equation for pressure ap-
pears in the majority of incompressible Navier-Stokes solvers [1, 2], and is by far, the most
computationally intensive component of such simulations. Thus, any effective methods that
can accelerate the numerical solution of such equations would have a significant impact on
computational mechanics and numerical methods.

The early history of iterative methods for matrix equations goes back to Jacobi [3] and
Gauss [4], and the first application of such methods to a finite-difference approximation
of an elliptic equation was by Richardson [5]. The method of Richardson, which can be
expressed as un+1 = un − ωn (Au

n − b) , where ‘n’ and ω are the iteration index and the
relaxation factor respectively, was a significant advance since it introduced the concept of
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convergence acceleration through successive relaxation. Richardson further noted that ω
could be chosen to successively eliminate individual components of the residual. However,
this required knowledge of the full eigenvalue spectrum of A, which was impractical. Given
this, Richardson’s recipe for choosing ω was to distribute the “nodes”(or zeros) of the ampli-
fication factor evenly within the range of eigenvalues of A. This was expected to drive down
the overall amplification factor for the iterative scheme, and the advantage of this approach
was that it required knowledge of only the smallest and largest eigenvalue of A.

Richardson’s method subsequently appeared in the seminal doctoral dissertation of Young
[6]. Noting, however, that “... it appears doubtful that a gain of a factor of greater than
5 in the rate of convergence can in general be realized unless one is extremely fortunate in
the choice of the values of ω”, Young discarded this method in favour of successive over-
relaxation of the so-called Liebmann Method [7], which was essentially the same as the
Gauss-Seidel method. This seems to signal the end of any attempts to accelerate Jacobi or
Jacobi-like methods for matrix equations resulting from discrete approximations of elliptic
equations.

In this article we describe a new approach for accelerating the convergence of the Ja-
cobi iterative method as applied to the finite-difference approximation of elliptic equations.
Using this approach, gains in convergence-rate well in excess of a factor of 100 are demon-
strated for problems sizes of practical relevance. The increase of processor count in parallel
computers into the tens of thousands that is becoming possible with multi-core and GPU
architectures [8], is leading to an ever-increasing premium on parallelizability and scalability
of numerical algorithms. While sophisticated iterative methods such as multigrid (MG) are
highly efficient on a single processor [9], it is extremely difficult to maintain the convergence
properties of these methods in large-scale parallel implementations. The domain decomposi-
tion approaches associated with parallel implementations negatively impact the smoothing
properties of the iterative solvers used in MG, and also limit the depth of coarsening in
such methods; both of these can significantly deteriorate the convergence properties of MG
methods. In addition to this, the ratio of computation to communication also decreases for
the coarse grid corrections, and this further limits the scalability of these methods. Within
this context, the iterative method described here, preserves the insensitivity of the Jacobi
method to domain decomposition, while providing significant convergence acceleration.

Another class of methods that is extensively used for solving elliptic equations is conju-
gate gradient (CG) [10]. CG methods, however, require effective preconditioners in order to
produce high convergence rates; in this context, the method proposed here could eventually
be adapted as a preconditioner for CG methods. Thus, the method described here could be
used as an alternate to or in conjunction with these methods, and as such, could a have a
significant impact in computational mechanics as well as other fields such as weather and
climate modelling, astrophysics and electrostatics, where elliptic equations are prominent.

Finally, the slow convergence rate of the Jacobi iterative method and the inability to
accelerate this method using relaxation techniques is, at this point, considered textbook
material [10, 11, 12]. In most texts, a discussion of the Jacobi method and its slow con-
vergence is followed immediately by a discussion of the Gauss-Seidel method as a faster
and more practical method. In this context, the method described here demonstrates that
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it is in-fact, relatively easy to increase the convergence rate of the Jacobi method by fac-
tors exceeding those of the classical Gauss-Seidel method. It is therefore expected that the
method presented here will have a fundamental impact on our view of these methods, and
spur further analysis of the acceleration of these basic methods.

2. Jacobi with successive over-relaxation (SOR)

We employ a 2D Laplace equation in a rectangular domain of unit size as our model
problem: ∂2u/∂x2 + ∂2u/∂y2 = 0. A 2nd-order central-difference discretization on a uniform
grid followed by the application of the Jacobi iterative method with a relaxation parameter
ω, leads to the following iterative scheme:

un+1
i,j = (1− ω)un

i,j +
ω

4

(
un
i,j−1 + un

i,j+1 + un
i−1,j + un

i+1,j

)
(1)

where n is the index of iteration. von Neumann analysis [11] of the above scheme results in
the following amplification factor:

Gω (κ) = (1− ωκ) with κ (kx, ky) = sin2 (kx∆x/2) + sin2 (ky∆y/2) (2)

where ∆x and ∆y are the grid spacings and kx and ky the wave-numbers in the corresponding
directions. The largest value of κ is given by κmax = 2. The smallest non-zero value
of κ depends on the largest independent sinusoidal wave that the system can admit. A
Neumann(N) problem allows waves to be purely one-dimensional, i.e. elementary waves can
have kx = 0 or ky = 0, whereas for Dirichlet(D) problems, one-dimensional waves are, in
general, not admissible, and kx, ky must all be non-zero. Therefore the corresponding κmin

are given by:

κN
min = sin2

(
π/2

max(Nx, Ny)

)
; κD

min = sin2

(
π/2

Nx

)
+ sin2

(
π/2

Ny

)
(3)

The above expressions are true for a uniform mesh and section 8 describes the extension of
this approach to non-uniform meshes.

The convergence of the iterative scheme requires |G| < 1 for all wave numbers, and it is
easy to see from Eqn.(2) that over-relaxation of the Jacobi method violates this requirement.
Furthermore, for a given grid, κN

min < κD
min; thus Neumann problems have a wider spectrum

and are therefore more challenging than the corresponding Dirichlet problem. We therefore
focus most of our analysis on the Neumann problem. We also note that while the above
analysis is for 2D problems, corresponding 1D and 3D problems lead to exactly the same
expressions for the amplification factors, and similar expressions for κmin, with a pre-factor
different from unity.

3. Jacobi with over-relaxation: an example

A simple example is presented here in order to motivate the current method. We start
by noting that for relaxation factors ≥ 0.5, there is one wave number with an amplification
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factor equal to zero, and this implies that for a discretized system with N unknowns, it
should be possible to obtain the solution in N iterations by employing a successively relaxed
iteration with relaxation factors at each iteration chosen to successively eliminate each wave-
number component of the error. We explore the above idea further via the following simple
one-dimensional example:

∂2u

∂x2
= 0, x ∈ [0, 1], u(0) = 0, u(1) = 0

The above equation is discretized on a five-point equispaced grid. Since the boundary values
(u1 and u5) are given, the resulting 3× 3 system that is to be solved is as follows:−2 1 0

1 −2 1
0 1 −2

u2

u3

u4

 =

00
0


Application of the Jacobi method to this system gives:un+1

2

un+1
3

un+1
4

 =

 0 1/2 0
1/2 0 1/2
0 1/2 0

un
2

un
3

un
4


Incorporating successive over-relaxation in to this iteration gives:un+1

2

un+1
3

un+1
4

 =

(1− ω)I + ω

 0 1/2 0
1/2 0 1/2
0 1/2 0

un
2

un
3

un
4


We now need to choose a relaxation factor for each iteration such that we can reach the
exact solution in three iterations. This condition leads to a cubic equation for ωk

3∏
k=1

(1− ωk)I + ωk

 0 1/2 0
1/2 0 1/2
0 1/2 0

 = 0

The roots of this equation can be uniquely determined and they are as follows (in descending
order of magnitude):

ω1 = 2 +
√
2, ω2 = 1 and ω3 = 2−

√
2

Thus, with the above unique choice of ωs, the exact solution (barring round-off error) can be
obtained in 3 iterations starting from an arbitrary initial guess. This idea of eliminating one
particular wave-number component of the error in each iteration is however not practical,
since it is difficult to know a-priori, the correct relaxation factor for each iteration. Besides,
even if appropriate ωk could be determined, the error-component for any wave number that is
eliminated in a given iteration could reappear due to roundoff error and possibly be amplified
in subsequent iterations since over-relaxation does generate amplification factors that exceed
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unity for some wave numbers. The above analysis is nevertheless insightful: considering the
fact that the ωk above are uniquely determined, it necessarily implies that constrained to
under-relaxation (note that ω1 > 1), it is not possible to obtain the solution in ≤ N steps.
In fact, it is interesting to note that without any over- or under-relaxation, the error would
be reduced by a factor of only (1/2)3 = 1/8 (approximately one order-of-magnitude) in three
iterations. Thus, over-relaxation does not necessarily produce divergence in the iteration; on
the contrary, when combined with under-relaxation, it can help accelerate the convergence
of JM.

4. Scheduled Relaxation Jacobi (SRJ) Schemes

The method described here (termed “SRJ” for Scheduled Relaxation Jacobi) consists of
an iteration cycle that further consists of a fixed number (denoted by M) of SOR Jacobi
iterations with a prescribed relaxation factor scheduled for each iteration in the cycle. The
M -iteration cycle is then repeated until convergence. This approach is inspired by the obser-
vation that over relaxation of Jacobi damps the low wavenumber residual more effectively,
but amplifies high wavenumber error. Conversely, under-relaxation with the Jacobi method
damps the high wave number error efficiently, but is quite ineffective for reducing the low
wavenumber error. The method we present here, attempts to combine under- and over-
relaxations to achieve better overall convergence. Our goal is to provide a set of schemes
that practitioners can simply select from and use, without going through any of the analysis
performed in this paper.

4.1. Nomenclature

Each SRJ scheme is characterized by the number of ‘levels’, which corresponds to the
number of distinct values of ω used in the iteration cycle. We denote this parameter by
P and the P distinct values of ω used in the cycle are represented by the vector Ω⃗ =
{ω1, ω2, . . . , ωP}. For the uniqueness of Ω⃗, we sequence those P distinct values of relaxation

factors in descending order, i.e. ω1 > ω2 > . . . > ωP . Second, we define Q⃗ = {q1, q2, . . . , qP},
where qi is the number of times the value ωi is repeated in an SRJ cycle. We also define
β⃗ = {β1, β2, ..., βP} where βi = qi/M , is the fraction of the iterations counts of ωi in one
SRJ iteration cycle. Due to the linearity of Eq.(1), the sequencing of the ωs within a cycle
does not affect the analysis of convergence. In practice, however, due to the roundoff and
arithmetic overflow associated with digital computers, appropriate sequencing of the ω ’s
might be require; this issue that will be discussed later in the paper. P , Ω⃗ and Q⃗ (or β⃗)
therefore uniquely define an SRJ scheme. It is noted that Richardson proposed to use a
different relaxation factor for each iteration in a cycle; that idea may be viewed as a special
case of the SRJ scheme with P = M and qi ≡ 1.

4.2. Amplification Factor

If one iteration of SOR-Jacobi attenuates the wave with a vector wavenumber (kx, ky) by
the factor of G (κ (kx, ky)), then the amplification factor for the one full SRJ cycle (defined
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as G(κ; Ω⃗, Q⃗) ) consisting of M iterations is given by

G(κ; Ω⃗, Q⃗) =
P∏
i=1

(Gωi
(κ))qi (4)

where Gωi
raised to the power of qi is simply because the relaxation factor ωi is repeated qi

times in one cycle. Following this, we define the per-iteration amplification factor for this
cycle as the geometric mean of the modulus of the cycle amplification factor G(κ; Ω⃗, Q⃗), i.e.

Γ (κ (kx.ky)) =
∣∣∣G(κ; Ω⃗, Q⃗)

∣∣∣ 1
M

=
P∏
i=1

|1− ωiκ|βi (5)

5. Two-Level (P=2) Schemes

We begin our analysis with the two-level (P = 2) SRJ scheme, for which Ω⃗ = {ω1, ω2}
and β⃗ = {β1, β2}. The per-iteration amplification factor for this 2-level scheme can be
expressed as

Γ (κ) = [|1− ω1κ|q1 |1− ω2κ|q2 ]
1
M = |1− ω2κ/α|β |1− ω2κ|1−β (6)

where α = ω2/ω1, and β1, which is equal to (1− β2), is replaced by β for notational simplicity.
The three variables α, ω2, β control the convergence of any P = 2 SRJ. Since Γ(κ) < 1
must be satisfied, we cannot have both ω1, ω2 larger than 1, and because we order relaxation
factors such that ω1 > ω2, ω2 is necessarily ≤ 1. Moreover, by definition, α and β also lie
within [0, 1].

The maximum magnitude of Γ in the closed interval [κmin, κmax], denoted as Γmax, de-
termines the asymptotic convergence of an iterative scheme[11]. Following convention, the
convergence rate of a given iterative scheme can be measured by the number of iterations
required to reduce the residual by an order of magnitude. This number, denoted here by
N0.1, is given by the following formula: N0.1 = ln(0.1)/ln (Γmax). Finally, for each iterative
method, we also define a convergence performance index ρ as the ratio of N0.1 for the classic
Jacobi method to N0.1 for the iterative method under consideration.

5.1. Optimal P=2 schemes

The asymptotic convergence of the iterative scheme can be maximized by minimizing
the maximum value of Γmax for any given grid size N . A simple analysis of Eq.(6) shows
that Γmax for P = 2 schemes could be located at one of the following locations:

κ1 = κmin; κ2 = (α+ β − αβ) /ω2 and κ3 = κmax ≡ 2 (7)

where κ2 is the coordinate of the internal extremum for (6). This is determined by first
noting that the local extremum of log Γ (κ) coincides with that of Γ (κ), and then solving

the equation d log Γ(κ)
dκ

= 0 for the form of Γ given in Eqn.(6)
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Among Γ (κ1), Γ (κ2), Γ (κ3), the value of Γ(κ1) is strongly constrained by the condition
Γ(0) ≡ 1 and therefore, the minimization of Γ(κ1) has to be the driving factor in the
convergence maximization. Thus, Γ(κ1) should be the global maximum and we therefore
require:

Γ(κ2) ≤ Γ(κmin), Γ(κ3) ≤ Γ(κmin) (8)

However, Γ, is a function of three independent variables: ω2, α and β, and minimization
of Γ(κmin) under the constraints of (8) is not straightforward. The mathematical problem
can, however, be simplified by first we noting that Γ(κmin), is a monotonically decreasing
function of (ω2κmin) near ω2κmin = 0. Since we have

d log (Γ)

d(ω2κ)
=

1

Γ

dΓ

dω2κ
(9)

the sign of d log (Γ)
/
d(ω2κ) is the same as that of dΓ

/
dω2κ. Hence to check the monotonicity

near 0, we only need to check the sign of d log (Γ)
/
d(ω2κ) at ω2κmin = 0. This is given by

d log (Γ)

d(ω2κ)

∣∣∣∣
ω2κmin=0

= −1 + β − β

α
< 0 (10)

Since κminω2 is very close to 0, it is safe to argue that with other variable unchanged, a
smaller ω2κmin could result in a smaller Γ (κmin). In addition, we also have

Γ(κ2) =

∣∣∣∣βα(1− α)

∣∣∣∣β |(1− α)(1− β)|1−β (11)

which indicates that Γ(κ2) is independent of ω2. Therefore, if the first condition in (8)
is satisfied strictly with an inequality, it is possible to increase ω2 to reduce Γ(κmin), the
maximum of Γ, without violating the first condition in (8). Hence to minimize Γ(κmin), the
first condition in (8) should be satisfied with an equality. Employing the same argument,
it is easy to see that the second condition in (8) should also be satisfied with an equality.
Condition (8) is therefore reduced to:

Γ(κ2) = Γ(κmax) = Γ(κmin) (12)

Maximization of convergence rate of the P=2 SRJ scheme is therefore equivalent to mini-
mizing Γmax under the two conditions in (12). Given that κmin is essentially a surrogate for
the grid size (see Eq.(3)) the above provides sufficient conditions to uniquely determine a
set of α, β, ω2 values that maximize the asymptotic convergence rate for a given grid.

The equations that result from the above procedure are shown in Appendix A where the
three primary unknowns are augmented by two ancillary variables ∂α/∂β and ∂ω2/∂β. The
addition of these two variables facilitates the implementation of the above procedure. We
note that these equations are highly non-linear and coupled in a complex way.
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Figure 1: Amplification factor curves for selected optimal P=2 SRJ schemes. Comparison between Jacobi
method (· − ·), optimal M = 2 (−) and optimal P = 2 (M > 2) (−−) scheme for N=16.

5.2. M=2 schemes

A closed-form solution of the above equations is obtained only for schemes with M =
2 (β = 0.5) and is as follows:

α =
(
−b−

√
b2 − 4

)
/2 and ω2 = (α + 1) / (2 + κmin)

where b =
2κmin − 6 (2 + κmin)

2

κmin + (2 + κmin)
2

(13)

The above expressions asymptote for κmin ≪ 2 which, based on (3), occurs at fairly small
values of N . The asymptotic values of ω1 and ω2 are 3.414213 and 0.585786 respectively,
and the asymptotic value of ρ for this scheme is precisely equal to 2.0. Numerical tests
of this for a 2D Neumann problem and a random initial guess indicate a ρ value of 1.99
which confirms the predicted convergence. Thus, even the two-step SRJ scheme, which is
the simplest possible extension of the classic Jacobi method, doubles the rate of convergence,
a rate that matches that of the classical point-iterative Gauss-Seidel method.

5.3. M > 2 schemes

For P = 2;M > 2 schemes, we have employed a MATLAB based numerical procedure
to solve the equation-set shown in Appendix A, and Table 1 shows the optimal parameters
obtained from this process for a 2D Neumann problem on a uniform N × N grid. Fig.1
shows plots of the amplification factor for optimal M = 2 and M > 2 scheme for N = 16
along with the amplification factor for the classic Jacobi method. It is noted that while the
Jacobi method has one node, the P = 2 SRJ schemes have two nodes. Furthermore, the
plots clearly show the effect of relaxing the M = 2 constraint for two-level schemes: the first
node in Γ is pushed closer to κ = 0 thereby reducing Γ (κmin).
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Table 1: Parameters and performance of optimized two-level (P=2) SRJ schemes for a range of grid sizes
N . ρtest is the value obtained from numerical tests for the Neumann problem and N excludes the boundary
points.

N SRJ Scheme N0.1 ρ (q1, q2) ρtest

16
Ω⃗ = {32.60, 0.8630}

72 3.31 (1,15) 3.41
β⃗ = {0.064291, 0.93570}

32
Ω⃗ = {81.22, 0.9178}

251 3.81 (1,30) 4.00
β⃗ = {0.032335, 0.96766}

64
Ω⃗ = {190.2, 0.9532}

923 4.14 (1,63) 4.51
β⃗ = {0.015846, 0.98415}

128
Ω⃗ = {425.8, 0.9742}

3521 4.34 (1,130) 4.34
β⃗ = {0.0076647, 0.99233}

256
Ω⃗ = {877.8, 0.98555}

13743 4.45 (1,257) 4.50
β⃗ = {0.0036873, 0.996312}

512
Ω⃗ = {1972, 0.99267}

54119 4.52 (1,564) 4.69
β⃗ = {0.0017730, 0.998227}

1024
Ω⃗ = {4153, 0.99615}

214873 4.55 (1,1172) 5.35
β⃗ = {0.00085251, 0.9991474}

Table 1 shows that ω1 for these optimal schemes is significantly larger than unity for all
N , and it increases rapidly with this parameter. This is expected since κmin decreases with
increasing N and the scheme attempts to move the first node closer to κ = 0 in order to
reduce the amplification factor at κmin. On the other hand, ω2 is very close to unity and
becomes increasingly so with N . It is also noted that β1 is significantly smaller than β2

(which, is equal to (1− β1)) for all cases and becomes smaller with increasing N . Thus, the
scheme compensates for an increasing over-relaxation parameter ω1 primarily by increasing
β2 relative to β1. Furthermore, N0.1 is found to increase with N and this rate of increase
with N will be addressed later in the paper.

The ρ for the optimal P = 2 schemes is found to range from 3.31 to 5.35 for the values
of N studied here. Thus, even within the constraint of two-levels, loosening of the M = 2
constraint results in a significant additional increase in the convergence rate. Note also that
these optimal two-level SRJ schemes are now roughly twice faster than GSM. Furthermore,
this speed-up is similar to the maximum gain possible with the method of Richardson [6].

For numerical validation of the above schemes, we choose q1 ≡ 1 and q2 = ⌈β2

β1
⌉. The use

of the ceiling function increases the under-relaxation very slightly over the optimal value and
should enhance numerical stability. This value of Q⃗ is also shown in Table 1 and we note
that q2 increases from 15 for N = 16 to 1172 for N = 1024. Thus, in all of these schemes,
one over-relaxation step is followed by a fairly large number of under-relaxations. We have
implemented the schemes with (q1, q2) given in the table for a 2D Laplace equation on a
uniform, isotropic grid with a cell-centered arrangement. Results for the Neumann problem
only are reported here since the Dirichlet problems exhibit similar trends.

The initial guess in these tests corresponds to a random value in the range [0, 1] at each
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grid point and Table 1 shows that the numerical tests exhibit a convergence performance
index (ρtest) that is equal to or slightly higher than the predicted value. It is noted that
the condition of optimality equalizes the multiple extrema in Γ. However, due to the finite-
precision mathematics employed in the optimization process as well as the round-off errors
inherent in the numerical validation, there is a small but finite imbalance between the various
values of Γmax and this can make the convergence behaviour somewhat sensitive to the initial
guess. Numerical tests with other initial guesses such as a Dirac δ-function confirm this
sensitivity. However, for every initial guess that has been tried, the asymptotic convergence
rates for the optimal SRJ schemes either equal or slightly exceed the corresponding prediction
from the mathematical analysis have been observed.

5.4. Sensitivity of optimal SRJ schemes

For practical implementation of the SRJ schemes, it is desired that N0.1 not increase
significantly if parameters that are close, but not exactly equal to the optimal set, are
employed. This issues is addressed in the current section.

We first prove that if a set of parameters that is optimized for a given system size (i.e.
given N) is employed to solve a larger system, the acceleration index ρ will not decrease be-
low that of the smaller system. For this, we note that for sufficiently large N , Γ(κmin) can be
approximated via a Taylor series as Γ(κmin) ≈ Γ(0) + κmin∂Γ/∂κ|κ=0 = 1 + κmin∂Γ/∂κ|κ=0.
Assuming further that the scheme under consideration is optimized using the process de-
scribed in the previous sections, Γmax = Γ (κmin), and the convergence performance index
can then be estimated as:

ρ ≈
ln
(
1 + κmin

∂ΓSRJ

∂κ

∣∣
κ=0

)
ln
(
1 + κmin

∂ΓJM

∂κ

∣∣
κ=0

) ≈
∂ΓSRJ

∂κ

∣∣
κ=0

∂ΓJM

∂κ

∣∣
κ=0

=
P∑
i=1

ωiβi (14)

It is noted that the above expression is independent of κmin and therefore, for a fixed set of
parameters (i.e. Ω⃗ and β⃗), ρ is independent of system size N , as long as Γmax = Γ(κmin).
Since Γ (κmin) has a negative slope at κ = 0, and κmin is smaller for a largerN , Γmax = Γ(κmin)
will be true if a set of parameters that is optimized for a smaller system is applied to a larger
system. The converse, i.e. using a set of parameters that is optimized for a large system to
a smaller system, is however not recommended; in that case Γ(κmin) decreases and because
all the interior extrema have to be balanced with Γ (κmin), Γ(κmin) is not guaranteed to be
Γmax. We also note that in this analysis, the dimension of the problem does not enter in to
consideration and therefore, parameters optimized for a 2D problem can be safely used for
corresponding 3D problem. This is demonstrated later in the paper.

We further explore the sensitivity of the convergence rate to scheme parameters via Fig.
2, which shows the effect of cycle size M on ρ. Each point on the curve corresponds to a
scheme optimized for a given M for the 2D Neumann problem. The maximum in ρ observed
in the various curves (and marked by circles) correspond to the global optima that are
identified in Table 1. The plot indicates that for small values of N , the maximum in ρ is
sharp, indicating a relatively high sensitivity to the scheme parameters. However, for larger
values of N , while the performance deteriorates rapidly as M is reduced from the optimal
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Figure 2: Convergence performance index ρ versus M for P = 2 schemes that are optimized for a given
value of M . N = 16 (· − ·); N = 32(· · ·); N = 64(−−); and N = 128( −). Circles identify the globally
optimal scheme for each N .

value, the effect on performance is relatively weak as M is increased beyond the optimal
value. This insensitivity is particularly pronounced for the highest values of N in the plot,
which exhibits a very broad maxima. This is particularly useful since problems of practical
relevance in computational mechanics are expected to have large grid sizes.

While small changes that are introduced to enhance the stability of the given scheme
are not expected to deteriorate the convergence significantly, caution should be exercised
in making ad-hoc modifications in some parameters. For instance, based on Table 1, there
might be a temptation to simply put ω2 equal to 1 for large N . However, this would eliminate
the under-relaxation that is necessary to balance out the over-relaxation, and would lead
to divergence. Similarly, starting from an optimal set of parameters, the over-relaxation
factor ω1 should only be decreased since increasing it would lead to instability. Thus, it is
advisable to round down the value of the over-relaxation parameters determined from the
optimization process.

6. Multilevel (P > 2) Schemes

In this section, we examine the convergence gains possible with multilevel (P > 2)
schemes. The general procedure for optimizing multilevel schemes is summarised in Ap-
pendix B and the ideas behind the equations are briefly described here. The constraint that
all local extrema are equalized with Γmax is still enforced. The parameters βi, i = 1, 2, ..., P−1
are considered to be truly free parameters, with ωi depending on them. The optimization
is then with respect to βi, i = 1, 2, ..., P − 1, and this procedure results in intermediate
unknowns like ∂ωi/∂βj. We note that βP is not a free parameter because of the constraint∑P

i=1 βi = 1. The size of this complex non-linear system grows proportional to P 2 and this
system of equations can therefore only be solved numerically. Furthermore, large values of
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N (i.e. small values of κmin) combine with large values of P to increase the stiffness of the
system of equations. Thus, optimal schemes presented in the paper are currently limited to
P = 5.

6.1. Optimal multilevel schemes

Table 2, 3 and 4 shows the optimal values that have been obtained from the numerical
optimization process for P = 3, 4 and 5 SRJ schemes, respectively. The trends in the table
are similar to those observed for the P = 2 schemes. First, except for one stage of under-
relaxation, all other stages in the sequence are over-relaxations, and the over-relaxation
factors increase monotonically with N . Fig.3 shows plots of the amplification factor for
optimal P = 3 schemes for N = 16 and 32. The plots clearly show that the optimization
process moves the first node in Γ closer to the origin as N increases.

For one case (N = 64) in each table, we have also included results for a three-dimensional
case. As predicted from the analysis in Sec. 5.4, the increase in the dimensionality of the
problem from one to three does not affect the performance of the scheme. Thus, schemes
identified as optimal from the 1D analysis can be used safely in the corresponding 2D and
3D problems.

The tables therefore clearly demonstrate significant increases in convergence acceleration
with increasing P . For instance, comparing the case of N = 512 for which we have derived
optimized P = 2, 3, 4 and 5 schemes, we note that ρ increases from about 5 for P = 2
to about 68 for P = 5. Higher gains in convergence will likely be obtained for larger P
although this remains to be formally demonstrated. Nevertheless, it is clear that multilevel
SRJ schemes offer significantly higher convergence rates.
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Table 2: Parameters for optimized P = 3 SRJ schemes for various values of N . For N = 64 the ρtest for the
corresponding 3D problem is also included.

N Optimal Scheme Parameters ρ ρtest

16
Ω⃗ = {64.66, 6.215, 0.7042}

5.71 6.5β⃗ = {0.039715, 0.18358, 0.77669}
M=27; Q⃗ = {1, 5, 21}

32
Ω⃗ = {213.8, 11.45, 0.7616}

7.90 8.1β⃗ = {0.019004, 0.13416, 0.84683}
M=53; Q⃗ = {1, 7, 45}

64
Ω⃗ = {684.3, 20.73, 0.8149}

10.2 12.9β⃗ = {0.0085938, 0.093707, 0.89769}
M=118; Q⃗ = {1, 11, 106} (3D:10.1)

128
Ω⃗ = {2114, 36.78, 0.8611}

12.5 13.4β⃗ = {0.0037113, 0.063178, 0.93311}
M=270; Q⃗ = {1, 17, 252}

256
Ω⃗ = {6319, 63.99, 0.8989}

14.6 15.6β⃗ = {0.0015454, 0.041468, 0.95698}
M=653; Q⃗ = {1, 27, 625}

512
Ω⃗ = {18278, 109.2, 0.9282}

16.4 17.7β⃗ = {0.000626, 0.0266, 0.972}
M=1615; Q⃗ = {1, 68, 3955}

1024
Ω⃗ = {51769.1, 184.31, 0.95025}

17.8 17.9β⃗ = {0.00024857, 0.016941, 0.98281}
M=1615; Q⃗ = {1, 43, 1571}
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Table 3: Parameters for optimized P = 4 SRJ schemes for various values of N . For N = 64 the ρtest for the
corresponding 3D problem is also included.

N Optimal Scheme Parameters ρ ρtest
Ω⃗ = {80.154, 17.217, 2.6201, 0.62230}

7.40 7.716 β⃗ = {0.031495, 0.082068, 0.25554, 0.63089}
M=31; Q⃗ = {1, 2, 8, 20}
Ω⃗ = {289.46, 40.791, 4.0877, 0.66277}

11.3 11.832 β⃗ = {0.015521, 0.053883, 0.22041, 0.71018}
M=64; Q⃗ = {1, 3, 14, 46}
Ω⃗ = {1029.4, 95.007, 6.3913, 0.70513}

16.6 15.264 β⃗ = {0.0072290, 0.033832, 0.18222, 0.77671}
M=146; Q⃗ = {1, 5, 26, 114} (3D:16.3)

Ω⃗ = {3596.4, 217.80, 9.9666, 0.74755}
23.1 24.7128 β⃗ = {0.0032024, 0.020392, 0.145608, 0.83079}

M=343; Q⃗ = {1, 7, 50, 285}
Ω⃗ = {12329, 492.05, 15.444, 0.78831}

30.8 34.2256 β⃗ = {0.0013564, 0.011845, 0.11316, 0.87362}
M=760; Q⃗ = {1, 9, 86, 664}
Ω⃗ = {41459, 1096.3, 23.730, 0.82597}

39.0 44.2512 β⃗ = {0.00055213, 0.0066578, 0.085990, 0.90680}
M=1818; Q⃗ = {1, 12, 155, 1650}

14



Table 4: Parameters for optimized P = 5 SRJ schemes for various values of N . For N = 64 the ρtest for the
corresponding 3D problem is also included.

N Optimal Scheme Parameters ρ ρtest
Ω⃗ = {88.190, 30.122, 6.8843, 1.6008, 0.58003}

8.5 8.816 β⃗ = {0.026563, 0.050779, 0.12002, 0.28137, 0.52126}
M=43; Q⃗ = {1, 2, 5, 12, 23}
Ω⃗ = {330.57, 82.172, 13.441, 2.2402, 0.60810}

14.0 13.232 β⃗ = {0.013467, 0.031695, 0.092173, 0.26580, 0.59686}
M=76; Q⃗ = {1, 2, 7, 20, 46}
Ω⃗ = {1228.8, 220.14, 26.168, 3.1668, 0.63890}

22.0 20.464 β⃗ = {0.0064862, 0.019035, 0.068043, 0.24139, 0.66504}
M=158; Q⃗ = {1, 3, 10, 38, 106} (3D:20.2)

Ω⃗ = {4522.0, 580.86, 50.729, 4.5018, 0.67161}
33.2 31.0128 β⃗ = {0.0029825, 0.011020, 0.048530, 0.21238, 0.72508}

M=343; Q⃗ = {1, 3, 16, 73, 250}
Ω⃗ = {16459, 1513.4, 97.832, 6.4111, 0.70531}

48.3 43.1256 β⃗ = {0.0013142, 0.0061593, 0.033568, 0.18206, 0.77689}
M=778; Q⃗ = {1, 4, 26, 142, 605}
Ω⃗ = {59226, 3900.56, 187.53, 9.1194, 0.73905}

67.7 59.9512 β⃗ = {0.00055665, 0.0033286, 0.022588, 0.15273, 0.82079}
M=1824; Q⃗ = {1, 6, 40, 277, 1500}
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Figure 4: Effect of grid sizeN on asymptotic convergence rate of various optimized SRJ schemes (P = 2 : (◦);
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isolated symbols in the plot identify the SRJ schemes described in Table 5 ( a: (◃); d:(▽)).

6.2. Scaling of convergence acceleration with grid size

Interesting trends emerge with respect to the effect of N on convergence acceleration. In
Fig. 4 we compare N0.1 for various grids for the entire set of optimal SRJ schemes that have
been identified so far and in the later sections. For the classical Jacobi method, N0.1 scales
linearly with the total number of grid points N2 and this is indeed borne out in our tests.
On the other hand, optimal SRJ schemes seem to provide a slower than linear increase in
N0.1 with total grid size. The slopes estimated for the lines in Fig. 4 are 0.97, 0.88, 0.81 and
0.71 for P=2, 3, 4 and 5 respectively. Thus, the advantage of SRJ schemes over the classical
Jacobi is not just through a fixed multiplicative factor in the convergence rate (as is the
case for Gauss-Seidel method that has a constant factor of two) but through a factor that
increases with grid size. This is highly desirable, since large grid simulations on massively
parallel computers, are precisely where this method would be most appropriate.

6.3. Trends in cycle size (M)

The cycle size M of optimal SRJ schemes is also of interest, since large cycle sizes would
be unattractive from a practical point-of-view. The cycle size M is plotted against N for all
P in Fig.5(a) and we find that cycle size grows nearly linearly with N for all values of P .
This is not unexpected since increasing N increases the range of wavenumbers and additional
iterations are needed in a given cycle to damp the error at each of these wavenumbers.

Figure 5(b) shows the cycle size M plotted against P for all N and we note that while
for each N , the cycle-size increases with P , it rapidly approaches an asymptotic value. This
combined with the trend shown in Fig. 4 implies that higher convergence rates obtained by
increasing P do not require substantial additional increase in cycle-size.
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Figure 5: Variation of cycle size M for various multilevel schemes: (a) M versus N for various P ; (b) M
versus P for various N .

6.4. Relaxation Schedule

The optimal multilevel schemes identified above have been subjected to numerical vali-
dation and in this process, the importance of appropriate scheduling of the iterations during
the SRJ cycles becomes apparent. We have previously mentioned that the schedule of re-
laxation factors does not effect the mathematical analysis of any SRJ scheme. However, in
practice, due to roundoff errors and the arithmetic overflow associated with digital com-
puters, appropriate scheduling of the ω ’s during a SRJ cycle might be required to ensure
numerical convergence of the SRJ scheme.

To understand this issue, we note first that for any single iteration that employs an
over-relaxation, |G|max = |1− ωκmax| ≡ 2ω − 1. Now consider, for example, the optimal
scheme for P = 4 and N = 256 in Table 3 that consists of 760 iterations, of which, 86
iterations have a relaxation factor of 15.444. If all of these 86 iterations are carried out
in succession, any initial error at κ = 2 would get amplified by a factor of (29.888)86,
which would lead to overflow even if the initial error at this wavenumber was machine-zero.
Therefore, the appropriate approach to avoid overflow in these schemes is to appropriately
distribute the relatively few over-relaxation in between multiple under-relaxation. In this
way, any intermediate growth in the high wavenumber residual due to over-relaxation can
be damped appropriately by the under-relaxations.

Our numerical experiments indicate that in most cases an even distribution of the over-
relaxations over the entire cycle is sufficient to avoid overflow. Thus for instance, in the
particular case of the optimal scheme for P = 4, N = 256 in Table 3 for which M = 760,
Ω⃗ = {12329, 492.05, 15.444, 0.78831} and Q⃗ = {1, 9, 86, 664}, the first iteration would be
the over-relaxation with ω1 = 12329. The 9 iterations with ω2 = 492.05 would be spaced
760/9 ≈ 84 iterations apart and the 86 iterations with ω3 = 15.444 would be spaced 760/86 ≈
8 iterations apart. All of the intervening iterations would be with the 664 under-relaxations
with ω4 = 0.78831.

In addition to the simple rule for scheduling the iterations provided above, a more formal
procedure is also available to generate a robust schedule that guarantees avoidance of over-
flow. This robust schedule is determined as follows: we assume a constant unit spectrum
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Figure 6: (a) Robust relaxation for optimal P = 4 scheme with N = 256. (b) Reduction in residual
associated with the robust relaxation.

for the initial error E0(κ) = 1 and use ω1 (the largest over-relaxation) for the first iteration.
According to Eq. (2), the spectrum after the first iteration would be E1(κ) = |1− ω1κ|.
A recipe is now needed to choose the relaxation factor for the next iteration from those
available, i.e. (ω2, ω3, . . . , ωP ). This is done by identifying the maximum of E1(κ) and then
choosing an ω from those available that produces the largest reduction in this maximum
error. This second iteration generated a new error spectrum and the process of identifying
the maximum in this spectrum and choosing an ω to maximize the reduction of this maxi-
mum is repeated until all the iterations in the cycle are exhausted. In Fig.6(a) we plot the
relaxation schedule obtained from this procedure for the optimal P = 4 for N = 256. We
can see that this particular sequence is not significantly different from an even spacing of
the over-relaxations across the whole iteration cycle.

Figure 6(b) shows the convergence history for the optimal P = 4, N = 256 scheme with
the robust relaxation schedule. The plot shows a reduction in the residual of nearly eight
orders of magnitude over 11 SRJ cycles and we note that while the residual does not reduce
monotonically, the overall trend shows robust convergence despite the extremely large over-
relaxations employed. Results of the numerical tests carried out using the robust schedule
are shown in the tables and these are very much inline with the predicted values.

A MATLAB script has been provided in the supplementary material to help the user
determine the robust relaxation sequence for any given optimal SRJ scheme. The user is
required to input N , Ω⃗ and Q⃗, and a vector named W of length M is generated with its ith

value being the relaxation factor for ith iteration.

7. ρ ∼ O(100) and Beyond

As mentioned before, the increasing stiffness of the equations in Appendix B for large P
makes it difficult to extract higher-level optimal SRJ schemes. This stiffness can however be
alleviated if β⃗ (or Q⃗) is prescribed and only Ω⃗ determined from the optimization procedure.
In that case, the free parameters are specified and we merely need to solve for the constraints
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Table 5: SRJ schemes for some selected N that can accelerate JM by two orders of magnitude. The results
are for 2D Laplace(ρL) and Poisson(ρP ) equation with Neumann boundary conditions.

index N SRJ Scheme ρ ρL ρP

a 512
Ω⃗ = {91299, 25979, 3862.1, 549.90, 80.217, 11.992, 1.9595, 0.59145}

148 147 151
Q⃗ = {1, 3, 9, 27, 81, 243, 729, 1337}

b 512
Ω⃗ = {83242, 14099, 1334.1, 126.45, 12.193, 0.79246}

90 92 91
Q⃗ = {1, 4, 16, 64, 256, 2504}

b 1024
Ω⃗ = {178919, 8024.1, 349.03, 15.9047, 0.799909}

90 95 97
Q⃗ = {1, 7, 49, 343, 3087}

d 1024
Ω⃗ = {300015, 47617, 4738.4, 428.51, 39.410, 3.9103, 0.65823}

190 199 197
Q⃗ = {1, 3, 13, 55, 227, 913, 2852}

that equalize all the interior extremums to Γmax, and with no intermediate unknowns like
∂ωi/∂βj. The parameter set obtained from this procedure will not correspond to the global
optimum for the given N and P , but could still provide significant convergence acceleration.
The goal here is to demonstrate convergence rates for grid sizes of practical interest that are
two orders of magnitude better than the Jacobi method.

Our preceding analysis suggests that ρ ∼ O(100) would likely necessitate going to higher
than 4-level schemes, and we have therefore focused our search on P ≥ 5 schemes. Taking a
cue from the observed trends for P ≤ 4 SRJ schemes, we select a rapidly increasing sequence
for βi. In the absence of any other available rule, we choose qi = Ri for i = 1 to P −1, where
R is an integer, and qP was chosen to be significantly larger than (q1+q2+ . . .+qP−1). Table
5 shows four selected schemes for values of N being 512 or 1024. We note that P ranges
from 5 to 8 for these schemes and ρ ranges from 90 to 190. Following this, we execute our
MATLAB algorithm to determine Ω⃗ that maximizes the convergence for the given choice of
Q⃗. The fourth scheme in the table was obtained serendipitously during our analysis and is
noted here since it provides the highest (190-fold) convergence acceleration found so far.

The convergence performance predicted from the analysis is tested numerically by em-
ploying a robust relaxation schedule as described in section 6.4. The numerical validation
does indeed bear out the prediction from the analysis and the results presented in this sec-
tion therefore indicate that it is relatively easy to construct SRJ schemes that provide a two
orders-of-magnitude increase in convergence rate over the Jacobi method. Also included in
the table are convergence performance results for a corresponding Poisson equation with ho-
mogeneous Neumann boundary conditions where the source term consists of a dipole (equal
and opposite delta functions located at (x, y) = (0.25, 0.25) and (0.75, 0.75)). As expected,
the presence of the source term has no significant effect on the convergence of the scheme.
The performance is also insensitive to the exact placement of the sources.
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8. Practical Considerations

8.1. Convergence on non-uniform grids

The vast majority of simulations in computational mechanics employ non-uniform meshes
and in this section, we briefly describe the effect of grid non-uniformity on the performance
of SRJ schemes. The ideas discussed here may be considered as being based notionally on
a localized von Neumann analysis. Furthermore, for simplicity, we focus on a 1D problem
although the ideas are equally applicable to multi-dimensional problems. For any non-
uniform grid with N0 grid points over a domain L, the minimum grid spacing (∆min) and
an associated grid number Nmax = L/∆min can be identified. It is trivial to note that
Nmax > N0. For such a grid, based on Eq. (3), a lower bound on κmin is sin2 (π/2Nmax),
whereas a κmin based on an average grid spacing would be sin2 (π/2N0), which is the same
as that for a uniform grid with N0 grid points.

It has been noted before that any optimal SRJ scheme identified for a given grid can be
applied to a larger grid with no loss in convergence rate. Based on this and on the fact that
Nmax > N0 for a nonuniform grid, we postulate that application of a SRJ scheme optimized
for uniform grid with N0 points can be applied to a non-uniform grid with the same number
of points without reduction in ρ. We have tested this numerically for a variety of canonical
non-uniform grids (with grid distributions based on exponential, tan-hyperbolic and cosine
distributions) and found the postulate to be valid. Finally, we note that it is possible that
application of SRJ scheme optimized for a grid number that is larger than N0 but smaller
than Nmax might yield faster convergence for a non-uniform grid with N0 points. However,
depending on the grid distribution, such an approach could also diminish the convergence
rate and even lead to divergence.

8.2. User implementation of SRJ schemes

In this section we briefly discuss how practitioners can utilize the SRJ schemes in their
simulations. Appendix A and B provide the system of equations that are used to obtain
an optimal SRJ scheme for a given grid size N . However, practitioners are not asked to
solve this system repeatedly or concurrently with their simulations. The parameters of
these optimal schemes can be computed once for a given grid and simply encoded into a
given simulation. Thus, the use of the SRJ scheme does not entail an additional recurring
computational cost of solving for the SRJ scheme.

Also, as noted, optimal schemes identified for a given grid size (say N1) can be used for
larger grids (N > N1) while retaining the convergence acceleration (ρ) associated with the
smaller (N1) grid. In the current paper, we have identified multiple optimal SRJ schemes
up to P = 5 for grids ranging from N = 16 to 512. Practitioners can therefore simply pick
the scheme most appropriate for their grid from the ones provided. For example, if a user is
solving a problem on a 600×600 grid, they could choose any of the optimal scheme identified
in the table above for N = 512, and they would be guaranteed a convergence acceleration
(ρ) equal to that associated with N = 512 for the chosen scheme. Once a scheme has been
selected by the user, the relaxation sequence could be scheduled based on either of the two
procedures described in section 6.4.
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9. Comparison with Richardson’s Method

Finally, we compare the current method to that proposed by Richardson [5]. The Jacobi
method with SOR can be expressed as un+1 = un − ωnD

−1(Aun − b) where D is the diago-
nal of A. Thus, for a uniform grid, the above expression is virtually identical to that of the
Richardson method. However the current approach to maximizing convergence is fundamen-
tally different from that of Richardson. In particular, in the context of the current analysis,
Richardson’s approach was to reduce Γ uniformly over the range [κmin, κmax] by generating
equispaced nodes of Γ in this range. In contrast, our strategy is to minimize |Γ|max and
this results in two key differences: first the nodes in the SRJ method are not equispaced
in the interval [κmin, κmax]; second, optimal SRJ schemes naturally have many repetitions
of the same relaxation factor whereas Richardson method generated distinct values of ω in
each iteration of a cycle. A major consequence of the above differences is that while optimal
SRJ schemes actually gain in convergence rate over Jacobi method as grids get larger, the
convergence rate gain for the Richardson’s procedure never exceeds ρ = 5.

10. Conclusions

A method for increasing the convergence rate of the Jacobi iterative method as applied
to the solution of finite-difference approximations to elliptic partial differential equations,
is presented. The method consists of a repeated sequence of iterations where a schedule
of over- and under-relaxation is employed for the iterations within each sequence. These
new schemes can be categorized naturally in terms of the number of ‘levels’, which are the
distinct values of the relaxation parameter that are used in each sequence.

We determine the mathematical conditions that maximize the convergence rate for a
scheme of any level, and for a given number of grid points. These mathematical conditions
present as a set of implicit, non-linear coupled equations. The increasing stiffness of these
equations for higher-level schemes currently precludes a solution for arbitrarily high level
SRJ schemes, but systematic solution for up to level-five, generates SRJ schemes that pro-
vide a sixty fold increase in convergence over the classic Jacobi method. The performance of
the schemes predicted by our analysis is validated via numerical experiments for a canonical
two and three-dimensional elliptic problem. By prescribing some parameters of the scheme,
we are able to derive higher (up to 8) level schemes, which provide more than a factor
of hundred speedup over the Jacobi method. The analysis also indicates that additional
gains in convergence rate may be possible by going to higher level schemes. These schemes
therefore hold tremendous potential for accelerating large-scale parallel simulations in com-
putational mechanics, as well as other fields where elliptic equations are a key component
of the computational model.

A number of further extensions of this work are possible and worth exploring. First, SRJ
schemes of levels higher than five and grid sizes larger than 512 could be derived by using
more sophisticated methods to solve the equations in Appendix B. Such schemes would
provide even higher convergence rates that what is noted in the current paper. Second, the
schemes derived here are directly applicable to Laplace and Poisson equations on uniform
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or non-uniform grids, but could also be extended to the Helmholtz equation with relatively
little effort. Third, as mentioned before, the methods described here could be modified into
preconditioners for conjugate gradient methods. Finally, SRJ based “smoothers”[9] could
be developed for use in multigrid methods. The advantage of such smoothers would be that
their convergence and smoothing properties would be insensitive to domain-decomposition.
Some of these extensions are currently being explored and will be presented in the future.
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Appendix A. Equations for Optimal P=2 SRJ Schemes

The following is the system of five coupled equations that need to be solved for obtaining
optimal parameters (ω2, α and β) for the two-level (P = 2) SRJ scheme:
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Appendix B. Equations for Optimal Multilevel (P > 2) SRJ Schemes

Starting with the definition of the amplification factor for a P -level scheme shown in
Eqn. 2 and following a process similar to that described above for the P = 2 scheme, we
identify the following unknowns:

1. P distinct values of relaxation factor: ωi, i = 1, 2, ..., P ;

2. their relative weight in a cycle: βi, i = 1, 2, ..., P ;

3. κ values of P − 1 local maxima: κmax
i , i = 1, 2, ..., P − 1. These local extrema lie

between two adjacent nodes and therefore κmax
i ∈

(
1
ωi
, 1
ωi+1

)
4. Finally, the partial derivatives: ∂ωi

∂βj
, i = 1, 2, ..., P ; j = 1, 2, ..., P − 1, and

5.
∂κmax

i

∂βj
, i = 1, 2, ..., P − 1; j = 1, 2, ..., P − 1.

The above add up to a total of 2P 2 unknowns. In order to solve for these unknowns we
need an equal number of equations and these are:
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1. the constraint
P∑
i=1

βi = 1;

2. a set of P − 1 equations that determine κmax
i : ∂

∂κ
Γ(κmax

i ) = 0, i = 1, 2, 3, ...P − 1;

3. a second set of P constraints: Γ(κmin) = Γ(κmax
1 ) = Γ(κmax

2 ) = ... = Γ(κmax
P−1)... =

Γ(κmax);

4. a third set of P − 1 equations to minimize Γ(κmin):
∂
βj
Γ(κmin) = 0, j = 1, 2, 3, ...P − 1;

5. and finally, a set of 2P 2−3P +1 equations that relate ∂ωi

∂βj
,
∂κmax

i

∂βj
to the other variables.
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